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The main purpose of this work is to describe the quantum analog of the usual 
classical symplectic geometry and then to formulate quantum mechanics as 
a noncommutative symplectic geometry. First, we describe a discrete 
WeyI-Schwinger realization of the Heisenberg group and we develop a discrete 
version of the WeyI-Wigner-Moyal formalism. We also study the continuous 
limit and the case of higher degrees of freedom. In analogy with the classical 
case, we present the noncommutative (quantum) symplectic geometry associated 
with the matrix algebra M,v(C) generated by the Schwinger matrices. 

1. I N T R O D U C T I O N  AND M O T I V A T I O N  

It is well established now that it is possible to give a complete description 
of Hamiltonian mechanics in the context of  Poisson symplectic geometry 
(Guillemin and Sternberg, 1984; Abraham and Marsden, 1985; Arnold, 1989). 
On the other hand, since the appearance of  quantum mechanics, several 
attempts have been made to give a precise interpretation of  the quantization 
phenomenon. This latter refers substantially to the construction of  a quantum 
system which admits the classical one as its limit when Planck's constant h 
tends to zero. 

In the beginning, quantum mechanics was interpreted as a statistical 
theory over phase space. Founding upon the Weyl (1931) quantization proce- 
dure Wigner (1932) gave an expression for a phase space distribution function 
(see also Baker, 1958; Agarwal and Wolf, 1970; Galetti and Toledo Piza, 
1988). 

Interesting developments of the Weyl -Wigner  approach are due to Moyal 
(1949 who introduced the sine-Poisson bracket (or Moyal bracket), for func- 
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tions on phase space that first corresponds to the commutator of quantum 
mechanical operators associated to these functions, and second goes into the 
usual Poisson bracket at the classical limit: h ---) 0 (see also Rivier, 1951; 
Jordan and Sudarshan, 1961; Remler, 1975; Liu, 1976; Sharan, 1979). 

It was realized that the WeyI-Wigner-Moyal quantization procedure 
can be fit into the context of the deformation theory of algebraic structures 
(Vey, 1974; Flato et al., 1976; Bayen et al., 1977, 1978; Lichnerowicz, 
1983). Recently there has been a revival of this technique of quantization 
by deformation (Bakas et al., 1987; Dunne, 1988; Dunne et al., 1988; Fairlie 
et al., 1989; Bakas, 1989; Carinena et al., 1989; Gurevich and Rubstov, 1992; 
Grabowski, 1992; Ballesteros et al., 1992; Kammerer and Valton, n.d.). 

In the context of C*-algebras, the set C:~(M) of smooth functions on the 
classical phase space (CPS) M ~'' of some classical dynamical system forms 
a commutative associative Poisson-Lie C*-aigebra equipped with a pointwise 
product, and with a Poisson bracket {, }. The underlying differential geometry 
is endowed with a (classical) commutative symplectic structure. So, quantiza- 
tion of a classical dynamical system appears in this framework as a breakdown 
of the commutativity symmetry of the classical C*-algebra. In fact, the quanti- 
zation by deformation procedure consists in maintaining the structure of the 
CPS and changing the algebraic structure defined on it by deforming the 
pointwise product and the Poisson bracket into a star-product *~ and a Moyal 
bracket {, }~, respectively, making use of the Weyl correspondence. 

For instance, the noncommutative tori (Rieffel, 1988) can be considered 
as deformation quantizations of ordinary tori for an appropriate Poisson 
structure (Rieffei, 1989). It was shown that the action (by translations) of an 
ordinary torus T a ~ Ra/Z a on the noncommutative torus A = C~(T a) makes 
this latter a noncommutative symplectic manifold with a smooth differentiable 
structure on which Connes (1980, 1986, 1990) showed how to extend the 
apparatus of the usual differential geometry involving connection, curvature, 
Chern classes, etc. 

Therefore, the starting point of the noncommutative differential (symplec- 
tic) geometry consists in replacing the abstract commutative C*-algebra 
C~176 of smooth functions on a commutative (symplectic) manifold M by a 
noncommutative C*-algebra A of functions on a noncommutative (symplectic) 
space. It is clear that, in the noncommutative symplectic case, one must define 
the noncommutative (or quantum) analog of the commutative (or classical) 
symplectic structure such that one arrives at the latter from the former by 
means of a commutative limit. 

In addition to Connes' (1980, 1986, 1990) approach, there exists another 
one due to Dubois-Violette (1988, 1990; Dubois-Violette et al., 1989a,b, 
1990a,b) which differs from the first one essentially in the definition of the 
noncommutative generalization f~ of the differential algebra of differential 
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forms (for review see also Djemai, n.d.-c). In this approach, a noncommutative 
symplectic structure for A is an element to of fl~er(A), where l-lDer(A) is the 
smallest differential subalgebra of the complex C(Der(A); A) and Der(A) is 
the Lie algebra of all derivations of A. The element to must satisfy the 
following conditions: 

(i) For a given H E A, there is a unique derivation ham(H) E Der(A) 
such that 

to(X, ham(H)) = X(H) for any X ~ Der(A) 

(ii) to is closed. 

It is easy to see that the existence of the commutative limit is ensured. 
The main aim of this work is to develop a matrix Hamiltonian formalism 

on a (torus) lattice quantum phase space using the noncommutative differen- 
tial geometry of the matrix algebra Mu(C) generated by a privileged basis. 
We also give another conformation of the fact that quantum mechanics (QM) 
can be understood as a (matrix) noncommutat ive  symplectic geometry. 

The paper is organized as follows. In Section 2, we recall briefly some 
notions of classical symplectic geometry. In Section 3, we review the Weyl-  
Wigner-Moyal formalism. In Section 4, we present the Weyl-Schwinger 
realization of the Heisenberg group as an extension of the Abelian double 
cyclic group ZN • ZN and discuss the importance of the choice of Schwinger 
basis. It appears that one may study physical situations with various numbers 
of degrees of freedom based upon the prime decomposition of N. We also 
study the continuous limit N ----> or Considering the Schwinger basis as a 
Fourier basis, one may easily see that quantization is deeply tied to the 
Fourier analysis. In this context, we construct the discrete version of the 
Weyl-Wigner-Moyal  formalism and present explicitly the case of N = 2. 
The apparatus of the noncommutative differential geometry of matrix algebras 
is presented in Section 5. In Section 6, we describe our matrix Hamiltonian 
formalism resulting from the use of the Schwinger basis, in complete analogy 
with the classical case. Finally, Section 7 is devoted to some concluding 
remarks and perspectives. 

2. CLASSICAL S Y M P L E C T I C  F O R M A L I S M  

Let us consider a dynamical system evolving in a classical phase space 
M ze = T*(B ~) with local coordinates ~" --- (qi, pj),  a = 1 . . . . .  2d, i , j  = 1, 
. . . .  d, in such a way that they obey the fundamental Poisson brackets 
(Guillemin and Sternberg, 1984; Abraham and Marsden, 1985; Arnold, 1989): 



522 Djemai 

{qi, qj}p = {Pi, Pj}P = O, {qi, pj}p = 8j (1) 

which is compactly summarized as 

{ ea, eb} = to.b (2) 

where the antisymmetric matrix tomb given by 

toao = ( Odxd ldxd~ 
\ - -  Idxa Oaxa] (3) 

is the inverse of the symplectic matrix O~o, i.e., 

to.b" tobr = 8o (4) 

In fact. tomb represents the components of the closed nondegenerate 
symplectic 2-form to: 

to = ltoabdEa A de b = dO = dpi A dq i (5) 

where 0 = p,dq i is the canonical (Liouville) 1-form. This defines the Hamilto- 
nian structure on the phase space M. 

Indeed, with any smooth function H(q, p) = H(e) on M one associates 
the Hamiltonian vector field 

X. = X~Ob (6) 

where Ob = a/O~ b. The components X b, which are given by 

X }  = (O.H(e))" to.b (7) 

permit us to deduce the Hamiltonian canonical equations 

~" = x ~ ( ~ )  (8) 

It is easy to see that the Poisson bracket involving two arbitrary functions 
F(e) and G(e) on M is given by 

{F(e), G(e)}e = - t o ( X  F, XG) = (D(X G, XF) = X~(G) = - X c ( F )  

OF OG OF OG 
= (OaF(e))" to,,b. (ObG(e)) = - - "  (9) 

Oq i Opi OPi Oq i 

Hence, the set C=(M) of classical observables possesses the structure 
of a Poisson-Lie algebra A0 = (C=(M), ", {, }p) equipped with two intemal 
laws, the pointwise product �9 and Poisson bracket {, }p, in such a way that 
the Jacobi identity 

{ {F, G}p, h}p + { {H, F}e, G}p + { {G, H}p, F}p = O (10) 

is equivalent to the relation 
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[X~, Xc] = Xcac}p 

and the Leibnitz rule 

{F, G.H}p = {F, G}p.H + G" {F, H}p 

guarantees that the Hamiltonian vector field is a derivation: 

XF(G'H) = XF(G)'H + G.XF(H) 

(11) 

(12) 

(13) 

3. W E Y L - W I G N E R - M O Y A L  F O R M A L I S M  

Let B = R d be a configuration space on which a one-particle system 
moves and let M 2a = T*(B) -- R 2a be its associated classical phase space 
(CPS) with local coordinates (qi, pj), i, j = 1 . . . . .  d. The CPS is then 
equipped with a Liouville 1-form 0 = ptdq i and a classical symplectic structure 
defined by the closed nondegenerate 2-form co = dpi A dq i. 

The Weyl map consists in associating to a classical observable 
F(q, p)  ~ A0 = (C~(M), ", {, }p) a quantum observable OF(q, p )  acting as 
an operator on the quantum mechanical Hilbert space L2(B), by means of  
the following operator Fourier transform (Weyl, 1931): 

OF(-q, p)  _ (2'rrfl a l  1.4'1 da' rib' dp' dq F(q, p) 

• exp{i [a- (p  - p ) -  b . ( q  - q)]} (14) 

where p and q are the self-adjoint operators on L2~B) obtained by the corre_; 
spon_dence principle from the classical variables p and q. The operators p 
and q generate the noncommutative fundamental Heisenberg algebra: 

[qi, qj]  = [Pi, Pj] = 0, [q', pj] = ihS}l (15) 

which is the quantum version of the algebra (1). In fact, the quantum mechani- 
cal Hilbert space represents the so-called quantum phase space (QPS). 

The Weyl map 

F( q, -fi ) --> O r (-q , -p ) (16) 

in invertible, i.e., there is a 1-to-1 correspondence between functions on CPS 
---) 

and their analogs on QPS. In fact, the functions F(q, p), which are often 
called I4qgner functions, are defined as ordinary Fourier transforms of the 
so-called Wigner densities Dr(d, -b) (Wigner, 1932): 

F(q, p )  - (21) a'rr JR f ~" da db Dr(a ,  b ) e x p { i [ a . p  - b . q ] }  (17) 

The Wigner functions F, which are o-numbers, are also called symbols 
of the associated operators OF (Berezin, 1980). If F (respectively ~ denotes 
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the usual Fourier transform (respectively the operator Fourier transform), 
we get 

OF = F[F-t[F]]  = F[DF] (18a) 

F = F[Dr] = F[F-  ~[OF]] (18b) 

The densities D F include commonly Dirac deltas or/and their derivatives. 
This is for the Weyl-Wigner transformation. 

Now we will discuss the developments of this approach due to Moyal 
(1949). It is well known that the differential geometric structure of a manifold 
M is perfectly determined by the properties of the algebra Ao -- C~(M) of 
smooth functions on M. Hence, to describe correctly the classical Hamiltonian 
mechanics one must study the symplectic differential geometry of the CPS, 
or equivalently, the Poisson-Lie algebra A0 = (C~(M), ", {, }v) of commutative 
classical observables on M. 

Now, to describe quantum mechanics it is straightforward to think of a 
noncommutative generalization of the above geometry. This idea was per- 
ceived at the advent of quantum mechanics (Heisenberg, 1925; Bom and 
Jordan, 1925; Born et al., 1926), where this latter appeared as included in 
the framework of a noncommutative version of the notion of Poisson manifold 
(Dirac, 1926), which will represent the QPS. 

In any case, the algebra A of quantum observables should be equipped 
with two intemal laws that can be compared with �9 and {, }p in A0. Since in 
the statistical Weyl-Wigner formulation of quantum mechanics one does not 
manipulate operators but their symbols, one may think of a twisted version 
of the two internal operations of A0. The simplest choice consists in deforming 
the commutative product, and the Poisson bracket {, }p into a noncommutative 
product *~ and a twisted Poisson bracket {, }v, respectively, by means of a 
deformation parameter v such that, for a particular value v0 of v, one has 

lim F*vG = F .G  (19a) 
v----) v 0 

lim{F, G}~ = {F, G}p (19b) 
v----)v 0 

In our context, the deformation parameter is no other than Planck's 
constant h and the classical limit h ---) D guarantees the passage from the 
twisted algebra An(Ca(M), *n, {, }~) to the classical one A0. 

The first example of a star-product was given by Moyal (1949). Starting 
from the._Weyl map (16), consider the product of two operators OF(-q,-p) 
and Oc(q, p) and try to define the resulting (deformed) product of the 
associated symbols F and G. Then, from 
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OF ~ Oa(q, p)  = On(q, p)  

and using (15) and the Glauber formula 

e a �9 e a = eA+B. eIa,Bl/2 

we get in terms of Wigner densities the following formula: 

or, 

where 

(20) 

(21) 

--, 1 I~ d-d d-b DFCd, -b )" Dc(-~" - -d, -b" - -b ) D,v(a", b") - (27~)d 2,, 

X exp{ih[a"-b - b" ' a ] /2}  (22) 

Knowing that the product �9 is tied to the convolution product • by 

F[F • G] = [F].F[G] (23a) 

F . G  = F[F-I[F] • F-I [G]]  (23b) 

if (F • G)(x) - (2rr)l/2 dy F ( y ) . G ( x  - y) (23c) 

then it is possible to identify equation (22) with a twisted convolution product: 

Dn = DF X~ Da (24) 

From equation (24), one naturally deduces a relation between the star- 
product *h and the twisted convolution product • analogous to (23b): 

H = F*n G = F[F-I[F] • F- t [G]]  (25) 

The Moyal product is a star-product *~ defined on the space C=(M, h) 
of formal series in h with coefficients in C=(M) such that 

F % G = F(q,  -p)  " e  ihP/2 �9 G ( , t , p )  ~ 

I ~ n ~ 

= ,~ (�89 P"(F, G) = F(e)'exp(+ih3,,~aOOb)'G(e) (26) 
.~'--o n! 

where O. = 8/Oe a, e'~ = (qi, P i) with a = 1 . . . . .  2d, i, j = 1 . . . . .  d; to "b is 
the inverse of the symplectic matrix [see (3)] and P is an operator defined by 

P~ G) = F.G (27a) 

P(F, G) = { F, G } p (27b) 

P"(F, G) = (-1)"P"(G, F) = ( O a l  " ' "  Oa F)'o.) alOI "'" o,)anbn'(Obl "'" Ob G ) (27c) 
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P"(F, G) = 0 for n > 0 if F or G is a constant in C=(M, h) (27d) 

P"(P~(F, G), H) = ~ P"(F, P~(G, H)) (27e) 
n+m=!  i i+m=l 

t>_O t>_O 

Equation (27e) expresses the associativity of the noncommutative algebra 
C=(M, h). Moreover, it is easy to see that the Moyal product defined by equation 
(26) satisfies the axiom (19a). In fact, by means of the precise choice (27c) of 
suitable forms of the bidifferential operators 

/:~: C~(M, h) • C~(M, h) ----> C~(M, h) 

that satisfy (27a), (27b), (27d), and (27e), the Moyal product is completely 
defined. 

Now, to emphasize the Poisson-Lie algebra structure of (C=(M, h), *D, 
one must define a deformed Poisson bracket {, }4 obeying the axiom (19b). 

The Moyal bracket is deduced from the commutator of two operators: 

[OF, Oc](q, P) =: ifiOiF, al~(-q,-p) = ifiOn(-q, -p) (28) 

Then, 

H(e) =: {F(~), G(~)}~ 

I 
=:~ [F(e) *~ G(e) - G(~) *~ F(r 

= - .~=o P2n+l(F, G) 
fi = (2n + I)! 

h sin P(F, G) 

2 F(~) sin h 0.ca.b0b "G(e) (29) 
h 

It is clear that the axiom (19b) is fulfilled. Moreover, this deformed 
bracket obeys the Jacobi identity: 

l lF, G}4, H}~ + l lH, F}~, G}~ + {IG, H}4, F}4 = 0 (30) 

It also defines a derivation of the Poisson-Lie algebra (C~(M, fi), *~, 
{, }~) with respect to *~, i.e., it obeys the Leibnitz rule: 

{F, G "4 H}4 = {F, G}~ "4 H + G "4 {F, H}4 (31) 

Finally, one has the following correspondences: 
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operator classical star-deformed 

o ( ) *h  

canonical quantization Weyl- Wigner-Moyal 

quantization 

1 

ih [ ' ]  < {' }P > {' }~ 

4. W E Y L - S C H W I N G E R  R E A L I Z A T I O N  OF THE 
H E I S E N B E R G  G R O U P  

If we represent the Heisenberg group as an extension of the Abelian 
double cyclic group ZN | ZN, then finite representations of  this group which 
are realized by two unitary operators U and V satisfying the basic relation 

V. U = coU. V (32) 

with o~ a complex number, are obtained by taking N x N matrices for U and 
V such that 

U N = 1NxN = V N (33) 

By taking determinants in (32), it follows that 

to = exp[(ilh)(2"trhlN)] = exp(i2'rr/N) (34) 

For each integer number N, there is one realization of the Heisenberg 
group. Let { I ak), k e Z} be a basis of orthonormalized kets for the space 
of states. Assume that the I at)  are eigenkets of  the operator V: 

V l a t )  = v t l a t ) / v t  = co t (35a) 

N - I  
V m I OLk> = (It) "kin I (2Lk> ::~ V m = ~ r km I Of.k><Of.k I (35b) 

k=0 

Then U is defined by 

U tak) = I at+l)  (35c) 

N - I  

U " l a t )  = lat+n} :=> U" = ~ l a~§ (35d) 
k=0 

with 

l a k * N )  - -  l a k )  

where the integers k, m, n are defined modulo N. 

(35e) 
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These definitions ensure that U and V satisfy (33). In this basis, the 

V = 

matrices V and U are given by 

1 - . .  
03 

11.12 
" .~ 

0 . . . coN- I 

ol fo 
U = 

0 
1 0 

1 0 . . .  01 

0 
1 

~  0 

(35f) 

In any case, and independently of the choice of the basis, U and V obey 
(33) and satisfy 

V ~. U ~ = t o ' n U  '~. V"  (36) 

Any element W of the operator algebra of the Heisenberg group can be 
determined, up to a scalar factor, by a triple of integers (m, n, p) such that 

W = Um.  V%op (37) 

These monomials in U and V constitute a complete basis for all quantum 
operators related to some chosen physical system. The above expressions are 
invariant under the simultaneous transformations 

U --~ V, V --~ U -j,  and m --~ n, n --~ - m  (38) 

So, let us denote by Y,,~ the operators that are invariant under this 
symmetry: 

Ynm = ~ Vn 

These elements satisfy 

Yon=Vn, Y~o=U m, Y,,o=l, 

(39) 

y,~, = y,+~ = y_,~,_~ 
(40) 

and form a complete orthonormal basis of the group algebra with the follow- 
ing properties: 

Assoc ia t i v i t y :  

(Ymn" Yk/)"  Ypq = Ymn" (Ykl" Ypq) (41 a) 

Quas ipe r iod i c i t y  : 

YN, = ( - I)"Y,,,, Y,,,N = ( -  l)mymo (41 b) 
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Two- fo ldedness :  

YoN = ( - 1 )  NI (41c) 

P o w e r :  

(Y,..)P = Ypm,t,. (41d) 

In the basis { l ak), k �9 ZN} where V is diagonal, the operators Y.,. take 
the form 

N - I  

Ymn = E ton(2k+m)12lOLk+m><OLk I ( 4 2 )  
k = 0  

and its corresponding matrix N • N is given by 

y ~  = to,~a 

to.~t~ m~ 0 0 .- .  0 
0 (l~nIN ,n+tl 0 "'" 0 

0 OmxlN m) 0 0 to.IN m+21 ... 
! '.' 

0 , . .  to,,I 

I 0 0 . . '  0 
~ to" 0 - ' -  0 

0 to ~ """ 0 O~N ,.Ix~ 

.., to,~N ,. I ~  

(43) 

Although the operators U and V were introduced by Weyl (1931), it 
was Schwinger (1960, 1961, 1970) who described quantum mechanics in 
this formalism. 

Any operator A belonging to the group algebra will be written in the 
Schwinger basis {Y,,~; m, n = 0 . . . . .  N - 1 } as 

 44, 

with complex coefficients 

a m" = Tr[Y+..A] = (Y,,~+ .A)~176 (45) 

and with 

Tr[Y,..] = N'6,.og.o (46a) 

Tr[A] = a . . . .  AOO (46b) 

Tr[A § = ~ l a ' "  12 (46c) 
m,n 
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Here, the trace defines on the operator algebra an internal product 
given by 

(A, B) = Tr[B§ (47) 

and consequently the metric follows as 

gtmn)(rs) = 1 Tr [Y+ "Yr.d = ~.,r~..~ (48) 

In this metric, the complete symmetrized basis {Ym.} is orthonormal. 
Then, the set of operators forms a metr ic  a lgebra  wi th  unity. 

Henceforth, we will use a more compact notation such that for m~, m2, 
? / I ,  n 2 ,  . .  �9 E Z, one has 

m = (m,, m2), n = (nl, n2), o = (o, o) 

m + n = (mr + nl, m2 + n2), m - n  = mtn l  + m2n2 

and, 

Then, 

m x n =:  rain 2 - m2n I 

(49a) 

(49b) 

Y~" = to '~l m2/2U"J �9 V m2 (50a) 

Yz = 1, Y ~ ' =  v~  = Y_;  (50b) 

A = 1 ,~ a,;Zy,7 ' a "7 = Tr[Y~.A] (50c) 

gd;  = N Tr[Y~. Y~'] = ~,7; (50d) 

~,g; = 8,,,,,t-8,,2n 2 (50e) 

For each value of N, the operators Y~ realize a representation that makes 
use of a two-cocycle a2. Occurring frequently in quantum mechanics, these 
representations are called pro jec t ive  representations and the operators u in 
them obey a generalized composition law: 

Y~'.Y~ = {exp[2ia2(m, n ) ]}Yg 'Yz  = {exp[ia2(m, n)]}Y,~'+; (51) 

with 

---.* ~ ' IT. - - -*  ----* 

R2(m, n) = ~ m X n = --ot2(n, m) (52) 
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In general, any two elements W~ = U mI- V"Ito pt and W2 = U '~" V n20.)p2 
will satisfy the following Heisenberg group defining relations in terms of 
triples: 

(mr, n2, Pt) * (m2, n2, P2) = (ml + m2, nt + n2, Pl + P2 (53) 

+ �89 - m2n0) 

From the associativity property (41a), we get the following consis- 
tency condition: 

A a 2 = e t z ( n , p ) -  a2(m + n , p )  + a 2 ( m , n  + p ) - -  a2 (m,n)  (54) 

= 0 (rood(Z)) 

Quantum mechanics also makes use of the one-cochain. Indeed, the 
action of the operators Ym on a state I otk) is given by 

Y~'lotk) = {exp[ial(k; m)]} l a,+m,) (55) 

with 

.---, "n'm-~ 
cq(k; m) = ~ (2k + mr) (56) 

It turns out that the so-called fundamental cocycle et 2 is given by 

or2 = Aett = eq(k + nt; m) - at(k; m + n) + cq(k; n)  (57) 

where A is a nilpotent derivative (coboundary operator) of some cohomology 
giving information on the projective representation under consideration 
(Aldrovandi and Galetti, 1990). 

In fact, it has been shown in Aldrovandi and Galetti (1990) that at and 
42 given by (56) and (52), respectively, result from the action of algebraic 
cochains on the group elements 

ctl(k; m) = at(k; Yg') (58a) 

et2(m, n') = a2(k; Y~', Y;) (58b) 

The nilpotent derivative A is defined on such cochains. Thus, if a t  is exact, 
i.e., etl = Aa0 with ct0 some 0-cochain, eq may be eliminated by adding a 
phase ct0 to the Wavefunctions. When ct2 is exact, it may be eliminated by 
redefining the operators in such a way that they appear state independent. It 
turns out actually that ct2 = Aeq [see (57)], so that Aa2 = 0 [see (54)]. This 
means that ct2 is a 2-cocycle called the fundamental cocycle. It is clear from 
(52) and (56) that et i depends effectively on the state label k, while or2 does not. 

Moreover, the fundamental cocycle will define a simplicial symplectic 
structure on the lattice quantum phase space (LQPS) analogous to the classical 
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one on the usual CPS, while the 1-cochain oh will play on LQPS the role 
of the Liouville canonical form 0 on CPS. In fact, LQPS is the lattice torus 
described by the double integer index m = (m~, m2) that label the operators 
belonging to the Schwinger basis {Y,7,}, and in which the area of each 
elementary lattice is equal to 2~r/N, tending to zero when N ~ oo. 

Therefore, the translations resulting from the action of the operator 
Y,~- on LQPS may be interpreted as unit multiple elementary gaps in the two 
basic directions (U, V). 

The choice of the symmetrized Schwinger basis {Y~} for the Weyl 
realization of the Heisenberg group is based essentially on its many remarkable 
properties, such as the following: 

First, for N = 2, the Yg reduce to the Pauli matrices [see (43)]: 

o Yll = = 0"2, Y o l  - 1 

For N --> 2, the Schwinger basis is a preferable basis admitting additive 
quantum numbers. It provides the finest grading of the Lie algebra gl(N, G) 
(Patera and Zassenhaus, 1988). Second, there are many helpful relations, 
such as 

1 
Y~-A.Y~ = (Tr[A])I (60a) 

1 ~ tok(,,_n) = ~,,n (60b) 
N 

1 ~ e2i~,O~,-#_;) ~r 
N--- 5 - = (60c) 

k 

Third, because of the two-foldedness property (41c), the u constitute 
a double covering mod(N) of the toms, with (ml, m2) playing the role of 
coordinates mod(N). Here Um' and V,,2 may also be seen as global coordinates 
with values in ZN | ZN appearing as noncommutative point functions because 
of the projective character of the representation. It was shown in Aldrovandi 
and Galetti (1990) how closed paths on LQPS lead to open paths on operator 
space and how this fact is related to noncommutativity. 

Fourth, one may study physical situations with various numbers of 
degrees of freedom following the value of N. For instance, when N is a prime 
number, the pair (U, V) describes one degree of freedom taking on N possible 
values. If N is not prime, then it is a product of, say, d prime numbers: 
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N = N I X . . .  XNjX. . .  XNa (61) 

and the Schwinger  basis  becomes  a product  o f  d independent  subbases,  one 
for  each pr ime factor, that is, one for each degree  of  f reedom:  

{Ymn} = {to'nnl2um, Vn} 

d d 

= | {Y,.jn) = | {o~TH~Um~" v"q 
j=l j=~ 

(62) 

where  m, n = 0, I . . . . .  N -  I and mj, nY = 0, 1 . . . . .  ( N j -  1), and 

to~ = exp[i(27rlNj)] (63) 

This result  implies a classif ication of  the quantum degrees o f  freedom 
in terms of  pr ime decompos i t ion  of  N. I f  we want  to work  with two or more  
degrees  of  f reedom,  we must  use for  N a wel l -chosen nonpr ime value. 

Fifth, the usual situation o f  the position q = (q~ . . . . .  qa)  and the 
m o m e n t u m  p = (p~ . . . . .  Pal) operators  is recovered  if  we choose  

Yon./= V "J = exp[i(2"rrlhNj)U2nJ.pj] (64a) 

Y,,j0 = U' i  = exp[i(27r/hNj)tnmj, qJ] (64b) 

j = 1 . . . . .  d. Then,  using the defining commuta t ion  relations of  the Heisen-  
berg formulas  (15) and the Glauber  formula  (21), we find for  equation (62) 

/2~\"2 i. 
Y~" = exp i ~ ~hNj) (n pj + m./'qO (65) 

where  we have used the fol lowing compac t  notation: 

Ix = (m, (66) 

with m = (mr, m2 . . . . .  md) and n = (n ' ,  n-, . . . .  na). 
To pass to the cont inuous case,  it is sufficient to take to infinity the 

torus radii, while N ~ ~ if d = 1, or Nj ---) oo with j = 1 . . . . .  d when N 
is not a pr ime number  (d > 1). We define this limit as follows: 

(2,rr/hNi)lnn j > a j (67a) 

(2"rr/hNj)l/Zmj > -b.i (67b) 
N ) ~  
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so that 

t~ \ - i h  j ) ) exp[--g- a .b i (67c) 
Nj~ 

U mj ) U(b i) = exp(- ib i 'q i )  (67d) 

V "j ) V(M) = exp(iai.pj) (67e) 
Nj--*~ 

Yff ) Y(a, b) = exp[i(a-p - b-q')] (67f) 
all Nj '-~ 

where a = (a 1 . . . . .  a i . . . . .  a a) and -b = (bl . . . . .  b i . . . . .  bd) are some 
constant dual vectors characterizing translations 

q ---) q + a (68a) 

p --~ p + b (68b) 

affected by the operator Y(a, b) on the 2d-dimensional phase space, which 
is a Hilbert space corresp_onding to the true quantum phase space (QPS). 

The elements Y(~, b) obey a generalized composition law analogous 
to (51): 

Y(~, d)-Y(~', b)  = exp{ie~z[(a, b); (c, d)]}Y(~ + c, b + d )  (69) 

where 

a2[(a, b); (c, d)l  = a2[Y(a, b); Y(~, d)l  

= h x (c, 2 )  
2 

= ~ ( a . d - b . c )  (70) 

Here, one must make the following remark. The 2-cocycle a2 given by 
equation (52) enables us to define the so-called simplicial symplectic structure 
on the lattice quantum phase space (LQPS) in analogy with the ordinary 
symplectic structure on the CPS. It also reduces to it in the classical limit. 
As for equation (70), it gives its continuous analog, which enables us to 
define the true quantum symplectic structure on the quantum mechanical 
Hilbert space (QPS). 

Sixth, the Schwinger basis may also be considered as a Fourier basis 
and then becomes fundamental for the Weyl-Wigner map: 
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Or(q,  p)  - (21) a'rr JR f ~ da' db' OF(a, ~)Y(a, b) (71) 

where Dr(N, ~) ~ the Wigner density associated to the symbol F(q, p) of 
the operator OF(q, p). 

This shows that quantization is deeply tied to Fourier analysis, since 
any operator is given as a Fourier expansion. 

Notice that the phase ~2 in (69)-(70) plays the role of a quantum 
correction, which is expressed in terms of the classical Poisson bracket 
[see (9)] 

h 
~2[(~, ~); (~, ~)] = ~ {a-p  - b - q ,  ~ . p  - ~-q}p (72) 

Here, the functions F(q, ~) and G(q, p) under consideration are the simplest 
linear functions on QPS. 

Generalizing (44) or (50c) for d degrees of freedom, we define any 
element A in operator algebra by 

1 
A = ~-9 ~ a~'Y~ " (73a) 

Ix 

with 

Tr[Y~-] = NdS~6, Tr[A] a 0", a ~" + = = Tr[Y~-A] (73b) 

For any operator A, one can define its continuous analogy by taking the 
following continuous limits: 

a ~ ) OF(a,-b) (74) 
N---~ 

(75) 

Then, the operator expansion (73a) appears as the discrete version of 
the operator Fourier transform (71): 

l i m a  = O~(p, q)  (76) 
N---r~ 

In order to define completely the quantum symplectic structure on QPS, 
we must first consider the product of two arbitrary operators A and B with 
coefficients a ~" and b '7, respectively, and then take the continuous limit. 

We may also use a more compact notation for the above expressions in 
analogy with that used in Section 2. Let ~ = (q, p) be a set of local coordinates 
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on the CPS [see (2)], 7 = (q, p) its analog on the QPS, ~ = (a, ~), and 
= (c, d).  Then, for instance, (670, (69), (70)-(72), and (71) read 

Y(~) = exp[i~ x 7] (77a) 

Y(~').Y(~) = exp{iotz[-~; ~']}Y(~ + ~') (77b) 

h ~  --, h 
ot2[~'; ~'] = ~ ot X 13 = "~ {~' X ~', ~' X ~'}p (77c) 

O~(~) _ (27r) d l  IR2d d~ DF(~')Y(~) (77d) 

Now, the product of two operators is given in the discrete and the 
continuous versions, respectively, as follows: 

1 1 1 
A o B = ~-d ~ ~ ~ a~'~Y~ "" Yb" = C = N---- ~ ~ cJu (78) 

i~ v 9 

--, _ 1 f --, OF o Oo(e) (2.a.)Zd ~ dot d-~ DF(-~)'Do(-~)Y(-~)'Y(-~) 

_ 1 I d~ D . ( ~ ) Y ( ~ )  (79) = 0 . ( 7 )  (2,rr) d 

Then, the discrete Wigner density c b" and its continuous analog 
DH(a) are given, respectively, by 

1 
c ~ = - ~  ~_ aCb ~-r exp[iotz(p; Ix)] (80) 

DH(o) - (2'n') d a dot DF(-d)'DG(cr -- Or) exp[iotz(tr; ot)] (81) 

In general, a twisted convolution product • is defined by [see (22)] 

1 d~' f (~ ) .  g(~' - ~) exp i ~ ~ • ~ (82) ( f  x~ g)(~) - (2~) ~ 

Then, in (81) we have a twisted convolution product with a deformation 
parameter v = h characterizing a "quantization" such that the classical 
situation is recovered when h --~ 0. 

As for (80), it describes also a twisted convolution product with a 
deformation parameter v = 2"rdN expressing a "discretization" such that the 
continuous analogy is recovered when N ~ ~. 

Using (25), one may deduce from the twisted convolution product X~ 
between Wigner densities a star-product *~ between symbols. 
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Knowing that a2[cr; a]  in (81) is given by (77c), then we can define 
the resulting star-product *~ by 

h F(5) *n G(5) = F(5).G(5) + i-~ {F(~), G(5)}p + . . .  (83) 

The resulting algebra equipped with the star-product *n becomes non- 
commutative. Assumed to be stable under *~, this algebra will concem only 
functions having compactly supported Fourier transforms such that this star- 
product may also be defined as the converging expression 

1 [ dS' d-~" F(5')G(5") F *n G(5) - (2,a.)2a 

X exp{ih[5 x 5" + 5" X 5 '  + 5' x 5]/2} (84) 

which is easily deducible from (25) and using the Dirac delta 

1 I d~ e ffxg" = ~(~) (85) 
(2at) ~ 

Before defining the star-product *N, we need to define the "symbol," 
sayf(~), of an operator A (we will denote it Ay in analogy with OF). In other 
words, we need to define the discrete version of [see (17)] 

1 I - f(5)  - (2~) a de~ Dr(W)exp(i~ X ~') = F[DF](5) (86) 

The problem here is that Fourier transforms are expansions in unitary 
irreducible representations and in our case we have projective representations. 
Recall that, in order to have a Weyl-Schwinger realization of the Heisenberg 
group, one needs to perform an extension of the Abelian double cyclic group 
ZN | Zu, SO that the truly unitary representations would be actually related 
to Zu | ZN and not to the Heisenberg group. 

Knowing that the discrete Wigner densities always convolute in a twisted 
way with a deformation parameter v = 2"rr/N [see (80)], we may use now a 
unitary representation and define the discrete version of (86) by 

1 
f(~) = ~-~ ~ a~'to ~'~ = F[a](~) (87) 

where ~ ~ (r, s) ~ ZN | ZN, r = (r,, r2 . . . . .  r~, ~ = (s t , s 2 . . . . .  sa), 
Ix = (m, n) [see (66)], to is given by (34), andf(~)  may be viewed as a 
function on (the Fourier dual of) LQPS (Aldrovandi, 1993). 
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The inverse of the discrete Fourier transform (87) is then defined by 

a~- = N ---~l ~]f(~)to_~-•162 = F - ' [ f ] ( ~ )  (88) 

Moreover, ifAf is Hermitian, then (a~') * = a -~" and the s y m b o l f i s  real. 
In fact, the relation [see (73a)] 

I 
Af = ~ _~ a~'Y~ " = Fta] (89) 

represents the discrete version of the operator Fourier transform (77d), so 
that one has [see equations (18)] 

Af = F[F- I [ f ] ]  = F[a] 

f = F[a] = F[/e'-l[Af]] 

(90a) 

(90b) 

and from (78), (80), we recognize 

Ch = Afo Bg = /e[F-I[h]] = P [F - t [ f ]  • F - I [g ] ]  (90c) 

h = f*N g = F[F-I[f] • F- l [g ] ]  (90d) 

Before treating an example of this discretization by deformation for the 
case N = 2, let us study the commutators of operators from which one may 
deduce the deformed Poisson bracket {, }.. The commutators 

[Y~', Y~'] = 2i sin(e~2[Ix; v]) Y~'+~" (91a) 

[Y(~'), Y(~')] = 2i sin(otz(~'; ~']) Y(~ + ~ )  (91b) 

generalize, respectively, to 

1 1 ~ db~.[yb. ' u [a, B] : ~-~ ~ ~-~ _ 
v p. 

27r 2'rri 1 
= i - -~ -C-  ~ -  N--d~cPY; 

P 

-~ 1 f d-d d~ OF(-~)Dc(-~)tY(-~), Y(~)] [OF, O G ] ( E )  - -  (2,rr) ~ 

f. = ihO~-~) - (f~)d da DH(~)Y(~) 

(91c) 

(91d) 
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where 

cff - N 1  ~ - - - ~r  a~b ~ s i n { a 2 [ p ;  ~]} (91e) 

-, _ 2 1 I d-~ DF(~)DG(-~ - -~) sin{a2[~; ~l} DH(~ h (2"rr) J (9If) 

represent now the Wigner densities corresponding to the discrete and con- 
tinous versions, respectively, of the Moyal bracket {, }., which is defined in 
general by 

{f, g}~ = 1 ( f % g  _ g %f )  (92) 
w 

In the continuous case, the deformed bracket is no other than the Moyal 
bracket defined in Section 2 [see (28)-(29)]: 

H(e) = {F(e), G(e')}h 

l 
= i-h {F(~) *~ G(~) - G(~) *~ F(~)} 

h sin {F(~), G(e)}p (93a) 

with the classical limit 

lim{F(~), G(~)}~ = {f(~), G(~')Ip (93b) 
h--e0 

The Moyal bracket (93a) can also be defined by the following converging 
relation [see (84)1: 

_ 2 1 d~' d~" F(e')G(C') sin ~ (5 • + -' (93c) H(e') ~ (2,~)2 a 

Using (80) and (87), one can define the discrete versions of (84) and 
(85) as follows: 

1 ~ 1  Ef(-~')g(-~") 
= - ,  

• exp i F (~  X + x ~' + ~' • ~) (94a) 
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1 ~] ~7.x~" = g~',6 (94b) 
N ~ - p. 

Let us remark that (94b) is a generalization of (60c). Now, one may 
derive the deformed bracket {, }N either using (91e) or directly from (92) 
and (94a) in analogy with (93c): 

"rr N a ~-d sin ~ (~ • + • ~' + ~' • ~) 

(94c) 

Finally, let us treat the case N = 2. Here, we are dealing with Pauli 
matrices o.l = Ylo, o2 --- YK t, and o'3 = Yot [see (59)] with one degree of 
freedom (d = 1). Using (41b), one may easily see that [see (51)] 

[Y.I.z, Y,.I,,,2] = 2i s i n [ 2  (ml 

reproduce exactly the su(2) algebra 

n 2 -- m2 n l )  ] Yml+nl,,nz+n2 (95) 

[oi,  o..i] = 2iei/ 'o'k (96) 

Then, it results from (44) that the coefficients a"" (Wigner densities) 
corresponding to o.a, o.2, and o'3 are, respectively, 

al = 2~i"l~ "~ (97a) 

a2 = 2~"J~ "l (97b) 

a 3 = 28"~ "l (97c) 

The associated s y m b o l s  are given by [see (87)] 

f l  = ei~s (98a) 

f2 = ei~(s-r) (98b) 

f3 ~- e-i~r (98C) 

Using (80), we find the different twisted convolutions 

al • a2 = 2~k2~tle-i~U2, 

a2 • a3 = 2~k~r~ei'~(k-t)n, 

a3 X2 al = 2~t~tle  i'r~2, 

a2 • al = 2~ke~nei"(k-t)"2 (99a) 

a3 X2 a2 = 2~kt~t2e i ~ 2  (99b) 

al • a3 = 2~kl~t le- i~t~  (99C) 

Using (90d), (87), and (41b), we find the different star-products 
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ft *2 f2 = if3, f 2  "2  f l  = - i f 3  (100a) 

A *2 f3 = if,, f3 *2 A = - i f ,  (100b) 

f3 *2 f, = if2, A *2 f3 = -/f2 (100c) 

Finally, the deformed brackets become [see (92) or (94c)] 

2 
~ "  - -  e i j k f k  (101) 

It is easy to see that the bracket {, }2 obeys the Jacobi identity (30). 
We remark here that the symbols redefined as Fi = i'rr~ will satisfy the 

same su(2) algebra with the deformed bracket {, }2 as do their associated 
operators ~i with the commutator [,] [see (96)]. 

This simple example shows how the Schwinger basis {Ymn} describing 
a quantum lattice two-toms may be viewed as a set of generators of some 
noncommutative associative algebra equipped with a star-product and defined 
on the ordinary lattice two-torus. 

In the general case, the relation ~7)  represents a Fourier expansion in 
the basis { ~ x ~  = exp(i(2-rr/N)~ X 6)} of functions on the lattice torus. 
From (73a), one may associate to a given Schwinger generator Y~" the Wig- 
her density 

a ;  = N '18  ~ = N a b r  = N d ~  k 'm '  " ' "  ~ I~ama" ~ ttnl " ' "  8 tana 

where = ( m ,  , -v = (-k, l ) ,  m = ( m  I . . . . .  rna),  n = ( n ' ,  . . . , na ) ,  -k = 

(k~,  . . . .  ka) ,  and 1 = (P . . . . .  la). The associated symbol is then given by 
f(~) = ~x~'. It is remarkable that the Wigner functions (symbols) correspond- 
ing to the basic Schwinger operators are just the Fourier basic functions. 
Moreover, to the product Y~'Y~" of two generators of the Schwinger basis 
will correspond the Wigner density c ~ = N d S ; ' f f - r  ia21ff:~l and, if we denote 
the symbols associated with Y~- and Y~" byf~. andf~, respectively, we obtain 
the twisted products 

f .  *N f~(~) = e ia2 tb ' ;~ ' l t~  (102) 

and the deformed brackets 

{f~(~),f~(~)}~ = _N sin v • m ( ; + ; ) x ~  (103) 
~r 

Furthermore, one may deduce from (69) the following relation: 

Y(c, d)-Y(a,  b) = q~7/hxc/~')Y(a, b)" Y(c, d) (104) 

where 

q = e i~ (105) 
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such that q ---> 1 when h ---> 0. Choosing (Djemai, 1992) 

a = ~  = u ,  b = c  = ~  (106a) 

where u is some unit vector, we get 

Y(~, ~ ') 'u  o) = qY(u, ~) 'Y(~,  ~) (106b) 

which coincides with the defining relation for the Martin plane (Manin, 1988). 
In the discrete case, the formula analogous to (106b) is no other than 

the basic relation (32), with to = e iz'rm --+ I when N ---> oo. Finally, it is 
important to point out that the LQPS is a space with a m a t r i x  s t ruc ture  and 
this leads us to use the formalism of matrix differential geometry (Dubois- 
Violette, 1988, 1990; Dubois-Violette et  al., 1989a, b, 1990a,b). 

5. MATRIX DIFFERENTIAL G E O M E T R Y  

For a general review on the subject, refer to Djemai (n.d.-c). Here we 
present a brief summary of this formalism. 

Let MN(C) be the algebra End(C) of all endomorphisms of C N, i.e., the 
set of complex N • N matrices, N --> 2. Then MN(C) is an associative 
noncommutative C*-algebra with unit 1. Let {Ek}, k ~ I = {1, 2 . . . . .  N 2 
- 1 } be a basis of self-adjoint traceless N • N matrices. Then, { 1, Ek} is a 
convenient basis of MN(C) consisting of Hermitian matrices. One has the 
following multiplication table: 

( i ) 
Ek'E~ = Kktl  + S'~ - -~ C~ Em (107) 

where Kk~ are the components of the Killing form of su (N)  given by 

I 
Kkt = Ktk = ~ Tr[Ek-Et] (108) 

The coefficients C~ correspond canonically to structure constants of 
su(N) ,  i.e., 

[iE~, iEt] = C'~"t(iE,,) (109) 

Here, we are not interested in the notion of the manifold itself, but only 
in the algebra of f unc t ions .  Actually, our f u n c t i o n s  are no other than the 
matrices 1, Ek, and C-linear combinations. 

Let Der(M~C)) be the algebra of all derivations of M,v(C) in itself: 

Der(M,,r = { X ~ E n d ( M N ( C ) / x (  E" F) = x(E). F + E- x(F), 

'v'E, F ~ M,v(C)} 
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Since all the derivations of M,v(C) are inner, it follows that the complex 
(resp. real) Lie algebra Der(M~C)) [resp. DerR(M~C))] reduces to the Lie 
algebra sl(N) [resp. su(N)]. The basis {ek} of all derivations of M~C)  is 
formed by the adjoint action of the generators {Ek}, k E L of su(N) -- 
Derr(M~C)). Then, there are only N 2 - 1 independent basic derivations ek 
defined by 

such that 

ek = ad(iEk) (110) 

[ek, et] = C~em (1 1 1) 

ek(iEt) = [iEk, iEl] : C'~(iEm) (1 12) 

Then, any element X of DerR(MN(C)) will be written as 

X = Xkek (1 13) 

and contrary to the commutative case, Der(M,v(C)) does not form a M~C)-  
module, i.e., a derivation multiplied by a matrix is not a derivation. 

Furthermore, it is shown that the smallest differential subalgebra 
I~Der(M~C)) of the complex C(Der(M~C)); M~C))  which contains M,v(C) 
is the complex itself. 

Any p-form ctp ~ I)Pr(MN(C)) is a p-linear antisymmetric mapping: 

Ctp: [Der(MN(C))] p -~ MN(C) 

(Xi, X2 . . . . .  Xp) --> ap(Xi, X2 . . . . .  Xp) (114) 

and its differential dotp ~ l)~+~rl(M~C)) is defined by 

d~ X I . . . . .  Xp) 

p ,~ 
= ~ (--l)kXkCtp(Xo . . . . . . . . . . .  X,) 

k=0 

+ ~ (-l)r+setp([Xr, Xs], X0 . . . . . . . . . . . . . . . . .  Xp) (l15a) 
O<_r~_s<_p 

for • . . . . .  • ~ Der(M~C)) and . means omission of • such that 

d 2 = 0 (115b) 

dE(x  ) = x(E) = ad(iF)(E) = i[F, E] (115c) 

for any E ~ M ~ C ) a n d  • = ad(iF) e Der(MN(C))with F ~ M~C)[see  (110)]. 
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The action of the inner product i x and the Lie derivative L• 
otp is defined as follows: 

ixOtp(• . . . . .  Xp-I)  = otp(X. XI . . . . .  •215 = 0 

and 

such that 

L• = x(E) 

on p-forms 

(116) 

L x = ixd + di• (117) 

for any E ~ MN(C) and X ~ Der(MN(C)) 

et, is called invar iant  if Lx(tx p) = 0 for X ~ Der(MN(C)) 

(118a) 

(ll8b) 

ixli• + ix2ixt = 0 (118c) 

L• - i• = itxt,x21 (118d) 

LxtLx2 - Lx2Lxl = Ltxl.• (118e) 

Now, in order to construct the whole graded vector space ~"~Der(MN(C)) 
of matr ix  forms we use the differential d as defined by the relations (115) 
and the exterior product. Firstly, define the space ~er(MN(C)) of matr ix  l-  
forms. Let {0k}, k a I = { 1, 2 . . . . .  N 2 - 1}. be a basis of l-forms dual  
to the basis {era}, m ~ I, of  real derivations [see (110)], i.e., 

0k(e,.) = ~f. 1 (119) 

By definition. 12~r(MN(C)) is a m o d u l e  over  MN(C). i.e.. one may also 
define the forms 

EmO k = OkE,. (120) 

such that [see (109), (110), and (115c)] 

dEk(ej) = ej(Ek) = i[Ej, Ek] = C~jkE,,, (121) 

which means that [see (I19)] 

dEc = - C'~ EmO t (122) 

This relation can be inverted to yield 

N2 KmKkrEp" ErdEq (123) O k 

Now. the Grassmannian structure on OD.r(M,,(C)) is introduced as usual 
by defining the exterior product on the basis {Ok}: 
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O k A 0 m : - - 0  m A O k (124) 

Let us remark here that, in general, we could have chosen as a basis of 
1-forms the set {dEk}, k E L but the latter leads to problems due to the 
following noncommutativity properties: 

Ek (dE,.) --/: (dE,.) Ek (125a) 

dEk ^ dE,. --/: -dE, .  ^ dEk (125b) 

when the basis {O k} possesses the good properties (120) and (124). 
Using the relation (115a), one obtains the important identity 

d0k = --iCk AP 0q 2 - -Pq--  /N (126) 

which is the analog of the Maurer-Cartan identity on the group manifolds. 
The relations (107), (120), (122), (124), and (126) give a presentation 

of ~Der(MS(C)) associated to the basis {Ek}. 
The element 0 of I~er(MS(C)) defined by 

0 = Ek0 k (127) 

is independent of the choice of the Ek. In fact, one has 

1 
0(ad(iE)) = E - ~ Tr(E) 1 (128) 

with E ~ Ms(C). Furthermore, 0 is invariant and any invariant element of 
O~er(MS(C)) is a scalar multiple of 0. This l-form is called the canonical 
invariant element of O~r(MS(C)). Using it, we obtain for equations (122) 
and (126) 

dE = i[0, E] for any E e MS(C) (129) 

d(-iO) + ( - i 0 )  2 = 0 (130) 

respectively. 
Many more things which we shall not need here may be introduced on 

matrix spaces, such as involution, integration of p-forms, canonical Rieman- 
nian structure for MS(C), Hodge-star operator, coderivative, Laplace-Beltrami 
operator, Hodge-De Rham decomposition, connections and their curva- 
tures, etc. 

For instance, the integral of an (N 2 - l)-form may be defined using 
the trace, 

l E O  l 02 ^ --" ^ 0 N2-1 = Tr(E) (131) A 
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We conclude this section by presenting very succinctly the example of 
N = 2, where the basis of M2(C) is formed by the 2 X 2 unit matrix 1 and 
the Hermitian traceless 2 • 2 Pauli matrices crj, j = 1, 2, 3 [see (59)]. 

In this case, one has 

crk'crt = 8~1 + ir 

Kkl = Ski, ~ = Ckt,~ = --2~*tm 

S~ = 0, ek = ad(icrk), 0k(ep) = 8~1 (132) 

and 

crkO t =  Ottrk (133) 

O k^O t =  --0 t ^ O  k (134) 

dcrk = 2E'fflcrm Ol (135) 

dO* = IEkpqO p/N 0 q (136) 

The relations (132)-(136) give a presentation of OOer(M2(C)) associated 
with the basis {cry}. 

6. QUANTUM (MATRIX) SYMPLECTIC FORMALISM 

Our approach consists in formulating the Weyl-Schwinger realization 
of the Heisenberg group (see Section 4) in a matrix context and adapting it 
to the formalism of the matrix differential symplectic geometry presented in 
Section 5. 

The Schwinger basis {Y,,n/m, n = 0, I . . . . .  N - 1 } given by equation 
(39) may be considered as a basis of the matrix algebra Mu(C) consisting of 
Hermitian matrices. Excluding the unit matrix Y0o, the Y,.,s are N 2 - 1 
unitary traceless N • N matrices and may be viewed as a basis for su(N). 

Then, the relation (44) gives the expansion of any element of M~C)  in 
the Schwinger basis {Ym, }- The multiplication table of these basic elements 
is given by the generalized composition law (51). Here the numbers m and 
n are defined modulo N. From now, we will use the compact notation given 
by equations (49). 

Let us first define the Lie algebra of derivations of Mu(C) relative to 
the basis {Y~/m 4 :0  }. Define the basic derivations as given by equations 
(110) and (112), i.e., 

e,g = ad(Y,;7)/,~7,,(u = [u u (137) 
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Using 

[Y~', Y~'] = - 2 i  sin{et2(m, n)} Yg+Z (138) 

and the Jacobi identity 

[Y~', [Y~', Y;]] + o.p. = 0 (139) 

one easily find that the basic derivations e~ obey the following relation: 

[eg~, ~]  = - 2 i  sin{ot2(m, n')}e-g~ +~ (140) 

Comparing with equation (111), we get the following structure constants: 

C ~ = - 2 i  sin{ct2(m, n)} 8~+~- (141) 
m n  

where the Kronecker symbol is defined by equation (50e). 
We will now compute the Killing metric for su(N) relative to the basis 

{Y;/m 4: ~} by using 

Triad(A). ad(B)] = 2N Tr[A. B] = 2 ~ K~za~b; (142) 
m J l  

where A, B ~ Ms(C). It results from a direct computation that K,~; is given by 

K,7,Z - 2N 2 ~ C~;C~.; (143) 

Using equation (108), i.e., 

/~;.; = 1 Tr[Y,-zYz] (144) 

the relation (138), and the property (46a), i.e., 

1 
Tr[Y,~] = ~,7,~ (145) 

we find that the Killing metric is given by 

/~'~ = ~'+~-ff (146) 

Remark that the metric g~7,,,; defined on the operator algebra by equation 
(48) is now tied to the Killing metric by the following relation: 

o%7,,~ = K,~.-2 = ~,~',7 (147) 

for m , n  4: 0. 
It remains to determine the general expression of the symmetric quantity 

S e---. Using the relation 
m r !  

�89 + Y~"Y~,] = /~;1  + S,~;Y; = cos{ot2(m, n)}Y,~+,7 
(148) 
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it follows that all the quantities S~- identically vanish: 
m n  

S y-  = -2~,7+~ff~ y.~ --= 0 (149) 
m n  

since the indices m, n, and p are defined such that the vanishing index 0' 
is excluded. 

We finally obtain the following multiplication table: 

Y~'" Y~" = exp[iet2(n', m)]Y,7+h" 

= 8,,7+;ffl - i sin{a2(m, a)} 8~-s D (150) 

Let us introduce now a basis of  1-forms, denoted by 0 "7, dual to the 
b a s i s o f  derivations {ez} [see the relation (119)]. Of  course, the indices m 
and n are always defined such that the value 0 is excluded. Then, we have 

o~'(~) = ~Y~ 051)  

such that the 0 ~ satisfy the following relation: 

0 ~ ^ 0 ~ = - 0  g ^ 0 ~" 

Since O6er(Mu(C)) is an Mu(C)-module, one also has 

y~-o ~ = o~yz  

(152) 

(153) 

It is also easy to see that 

dYe(e;) = e;(Y,~) = [Yz, Y,z] 

= - 2 i  sin{a2(n, m)} Y~'+y = C~Y~" 

so that 

n o  

(154) 

Using equations (124), (115a), and (141), one finds 

dO~'= _ 1  ~ Cfq-Or7 ̂  0'7 
pet  

= - i  ~] sinla2(m, q)} 0 ~" ̂  0 ~'-~" 
q 

(155) 

(156) 

Then, equations (150), (152), ( 153), (155), and ( 156)_fiive._a presentation 
of Ooer(Mu(C)) associated to the Schwinger basis {u  4= 0 }. 

The element 0 e O~er(Mu(C)) defined by 
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0 = ~ Y'70 '7 (157) 
In ~ 0  

will be called the canonical l-form. As expected, this l-form plays the role 
of the Liouville l-form and its differential, the 2-form 

O = -dO (158) 

will represent the quantum (matrix) symplectic 2-form. It is given by 

--= :Dg,, 0 "  - -  ; ^ 0g = -'~-Ct7,7; Y170'7 ̂  0g = Y'7d0"7 

= i ~ sin{a2(m, n)}Y'7+Z0 '7 ^ 0 g (159) 
I?l g l  

Then, the quantum symplectic matrix D~y is an (N 2 - 1) • (N 1 - 1) 
antisymmetric hypermatrix whose entries are the N • N Schwinger matrices: 

D.,,7~" = -C,eT,TY ~" = [Yz, Y'7] = ez(Y'7) = -D~'7 (160) 

Using equations (160) and (50c), we find the following relations: 

,e'7(A) = ~ ~ fl'Tg'a a" (161) 
I! 

- 1  
[a, B] = -~-  _~ a~'D.'Ta-b '7 (162) 

I n  J1 

dY'7 = ~ D~'20 'z (163) 
n 

1 
dA = ~ _~ a'~'l~',;0 ~ (164) 

m j i  

The hypermatrix 1"),;~ has an inverse which is defined as a hypermatrix 
A"" satisfying the following properties: 

D~,TA 'y  = At;~D~-~ = 5mY-IN• (165) 

In order to determine it, one must first define the inverses y,,7 and 
4 - -  

/~"  of the Schwinger matrix Y'7 and the Killing metric K'7;, respectively. 
The Killing metric, which may be used to raise or to lower indices, has 

an inverse defined by 

/(,n-g = ~+~'/y 

and the inverse Y~ is defined such that 

~o;7 = /C7gu and Y'7 = K'7~'Y g 

(166a) 

(166b) 

(167) 
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so that the Y~ are just the Hermitian conjugates of Y,7 [see equation (40)]: 

y,7 =__ y_~ = y~  = y,~l (168a) 

y~. ___ y-,~ = (y,V)+ = (y~7)-. (168b) 

Let us remark that equation (60c) may be rewritten in this context as 

_ ~  exp[ict2(m, n)] = N28,-5 - I (169) 

Using equations (143) and (150), one verifies that the hypermatrix 
Am" that obeys equation (165) must be of the form 

- -  1 y Z  y ~  1 
A m" = N-- i �9 = - ~  K ~ ; K ~ ; Y ;  �9 Y; (170) 

Notice that this hypermatrix is not antisymmetric. Indeed, one has 

A ;~" = exp[2iee2(n, ~')] A"'-"- (I 71) 

Equation (155) [or (163)] can be inverted to yield [see equation (123)] 

- -  l l K ~ ; K ~ ; y ; .  y ; d y X  (172) 0 ~" = A"O'dY; = N- 7 Y~'. Y~dY~" = 

Finally, if we consider N = 2, with T = (1, 0), 2 = (1, 1), and ~ = 
(0, 1), we obtain 

1 --i0"3 i0.2 
A m  n = 1 io.3 1 - "  I 

4 \ - io '2  io'1 1 )  

(173) 

Furthermore, one may also verify that the q u a n t u m  canon ica l  l-form 0 
defined by (157) is effectively the basic i nvar ian t  e l emen t  of O~e,(MN(C)). 

Indeed, for any vector field X �9 Der(M~C)) given by 

0 o )  
--0.2 

11,..  = 2i  - 0 . 3  0 I , 

0"2 --0"1 

one has 

X = ~ ,~ x'e-g= (174) 

ix(0) = 0(X) = ~ / ~  X"Y~ (175a) 

1 
di• = d[0(X)] = ~ ~ x~'dY,-g 

-- - -  1 

m,n m,n,o 
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and 

ixd(O) = - i •  = - � 8 9  l-~,7ix(0 ~ ^ 0 z) 
m 

- 1  ~ ~7,1~7;0,7 1 - - N - -  ~_~__ ~r  v-~. (175c) 
I l l  71 In  ,/1 p 

so that, for any X ~ Der(M~C)), one has 

Lx(0) = [i• + dix](0) = 0 (176) 

Moreover, it is easy to see that 

Lx(f~ ) = -Lx(dO ) = -d(Lx(0) ) = 0 (177) 

and consequently all vector fields X are said in the classical terminology to 
be strictly Hamihonian or globally Hamiltonian (Guillemin and Sternberg, 
1984; Abraham and Marsden, 1985; Arnold, 1989). This means that to each 
vector X ~ Der(M~C)) will correspond an element ct = dA of 
~er(Mu(C)) such that equation (177) holds, and conversely, to each 1-form 
dA one associates a Hamiltonian vector field XA such that ixafl = dA, where 
the components X~ of XA in the basis { ,G'.} coincide with the coefficients 
a ~" of A in the Schwinger basis. 

Hence, operators of  the form 0(X) play the role of generating functions: 

d[0(Xt)](X2) = ~"~(Xi, X2) = -d[O(x2)](XI) (178) 

for any Xi, X2 E Der(MN(C)). 
Equation (137) was chosen rather than equation (110) to be in conformity 

with the results given by equations (91c) and (91e) for d = 1, i.e., 

27r 2"rri 1 ~ c;Y; 
[A,B] = i --~- C - -N- N - 

r 

c; - N 1 ~, a,.br_ m sin[et2(r, ~,)] (179) 
"rrN-~" 

In analogy with the classical case, the corresponding quantum (matrix) 
Poisson bracket is then defined by 

.{A, B}m =: I~(XB, XA) = XA(B) = -xB(A) (180) 

As expected, this matrix Poisson bracket is just the commutator 

1 
{A, Blm = [A, B] - N2 ~ a'~'D~;zb ~ 

m ,n 

2"rr 2i 
= i - ~  C - N2 ~ a~b ;-;~ sin[~2(r, g)lY; (181) 

m , r  



552 Djemai 

and we can read the discrete version of the Moyal bracket components [see 
equations (91c) and (91d)]. 

Thus, the quantum (matrix) symplectic 2-form ~ defined in the context 
of the noncommutative differential geometry of  matrix algebras MN(C) gives 
directly the discrete version of the Moyal bracket. 

In other respects, it is easy to verify that the Jacobi identity 

[A, [B, C]] + c .p  = 0 (182) 

is equivalent to the relation 

[X.A, Xn](C) = XCA,BI,,,(C) = -Xc({A,  B}m) 

= dC(xla.e},.) = -d({A,  B}m)(Xc) (183) 

for all operators A, B, and C. In particular, we have 

[,ea, ~ ] (Y0  = -~ ({Yz ,  Y;},.) 

= dYg([e-~=, ez]) = -d({Y~-, Y~'},.)(eg) (184) 

We deduce from equation (183) that the matrix Poisson bracket plays 
the role of the generating function of the Lie bracket of the corresponding 
Hamiltonian vector fields. 

One may also introduce the antisymmetric hypermatrix l"g"" defined by 

l-~Z = K~;K.-.rI-~_Z = [y~, y~] = N2(A,;; _ Aa'~ ") = _~,7;  
(185) 

In order to complete the analogy with the classical case, we give here 
the quantum analogs of the classical relations (6)-(7), (9), and (12)-(13), 
respectively: 

XA = bl ~ yJe~, ~ = a '7 = ~ (A)A  ''m (186) 

{A, B},. = [A, B] = -~(Xa,  • 

= XA(B) = -xe (A)  = ,eg.(A)Am"eif.(B) (187) 

and 

Leibnitz 

{A, B'C}m = {A, B}m'C + B. {A, C}., 
rule 

XA(B'C) = XA(B)'C + B'xa(C) (188) 

when the quantum analogs of equations (5) and (10)-(l l) are already given 
by equations (159) and (182)-(183), respectively. 
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7. DISCUSSION AND PERSPECTIVES 

In this work, we have emphasized the importance of the particular choice 
of the Schwinger basis in the discrete realization of the Heisenberg group 
and in the construction of the associated discrete Weyl-Wigner-Moyal and 
Hamiltonian formalisms. Quantum mechanics is then presented as a matrix 
symplectic geometry. 

Moreover, it has been shown (Landsman, 1992) that the discrete Weyl- 
Heisenberg algebra may give some good understanding of the notion of the 
quantum phase space, this latter being necessary to completely formulate 
quantum mechanics. 

Furthermore, we find in the literature many attempts to describe quantum 
mechanics in different directions. Essentially, the tools used for this program 
are the star-deformation, quantum algebras, and noncommutative differential 
geometry; see, for instance, Dubois-Violette (1988, 1990), Dubois-Violette 
et al. (1989a,b, 1990a,b), Landsman (1992), Flato and Lu (1991), Flato and 
Stemheimer (1991), Lu (1992), Dimakis and Muller-Hoissen (1992), and 
Majid (1992). 

In this context, quantum mechanics is presented in Dimakis and Muller- 
Hoissen (1992) as a noncommutative symplectic geometry and in Majid 
(1992) as a quantum double. 

It has also been argued that it is possible to describe classical and quantum 
mechanics in a unified scheme of noncommutative geometry (Dass, 1994). 

More generally, models of gauge theories based on quantum groups 
have been studied (Aref'eva and Volovich, 1990; Casteilani, 1992; Brzezinski 
and Majid, 1992; Castellani and Montelro, 1993), and quantum versions of 
the Killing form and the structure constants presented. 

The Newtonian and Lagrangian formulations of quantum mechanics 
in this context have also been treated (Sudberg, n.d.; Lukin et al., 1993; 
Malik, 1993). 

Furthermore, there is a deep link between the theory of quantum groups 
and the star-deformation. Effectively, Dubois-Violette (1990) showed that the 
C*-Hopf algebra of representative elements corresponding to a compact 
matrix quantum group (Woronowicz, 1987) is isomorphic as C*-coalgebra 
to the C*-algebra bf representative functions on the corresponding classical 
compact group. This isomorphism appears as a generalization of the Weyl 
correspondence (Weyl, 1931). 

In other respects, the question of the determination of the quantum 
symplectic structure in its discrete and continuous forms requires more investi- 
gation, although Dubois-Violette (1988, 1990) showed that the Heisenberg 
algebra Ah defined as a C*-algebra with unit generated by two Hermitian 
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elements p and q such that [q, p] = ih correspond to the two-dimensional 
quantum phase space with a noncommutative symplectic structure given by 

1 
to = ~ [ . . . [dp,  p], p] . . . . .  p] A [ . . . [dq,  q], q] . . . . .  q] 

(ih)n(n + 1)! .~ . ~ ' -  
n times n umes 

which reduces to the ordinary one, dp ^ dq, at the commutative limit h 
0. This is another confirmation that quantum mechanics can be understood 
as a noncommutative symplectic geometry. 

In any case, it is clear that all these points and related topics, such as knot 
theory, braided groups and algebras, quantum fiber bundles, etc., constitute 
research directions of interest. 

Finally, this work has been conceived as a step in a large program whose 
main aim is to give a more precise description of quantum mechanics in 
the framework of modern theories such as quantum groups, knot theory, 
noncommutative differential geometry, etc. (Djemai, 1994, n.d.-a,b). 
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The  top o f  page  548 should  read:  

It fo l lows  that  the quant i t ies  S&-  are g iven  by: 
n!  n 

SE._,,, = e x p [ i a 2 ( ~  + ~,  p)]cos[ia2(i--nn ' t-~)]y~+n_ ~ _ ~ + n , ~ y _ t  ~ (149)  

Final ly ,  we have  the fo l lowing  mul t ip l i ca t ion  law:  

Y~" Yg = e x p [ i % ( ~ ,  t ~ ) ] u  

= K,;,;1 + + 112c ;)v; (150) 


